If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6n^2+6n-14=0
a = 6; b = 6; c = -14;
Δ = b2-4ac
Δ = 62-4·6·(-14)
Δ = 372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{372}=\sqrt{4*93}=\sqrt{4}*\sqrt{93}=2\sqrt{93}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{93}}{2*6}=\frac{-6-2\sqrt{93}}{12} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{93}}{2*6}=\frac{-6+2\sqrt{93}}{12} $
| 5b–12=18 | | 5-(x/2)=20 | | 2(3)^x+5=45 | | 2(5)^x-6=24 | | 53x+8=252x | | (x+7)/(x+4)=0 | | 5x/4+1/8(x+2)=3 | | 3x-5+2x+19-x=0 | | 5-k=12=16 | | 108-50r=4r | | 4(3-2)=8(2w+3) | | 2(4+r)=8 | | -2(9+2a)-8(4-5a)=-112 | | x4(3x+3)=23 | | 1/2(3/2x+22)-6x=3/4x+2/3 | | 5/y=4 | | 2(1-3x)+2(4x)=24 | | r25=7+r | | (2x-7)-4x+8=4(x+6) | | 2/3(x-4)=3/5(x-3) | | 4x+3(x-2)+5(x+2)=-20 | | 4(x-2)-3(5x+2)=x-14 | | 9(8x+6)=25(x-3) | | -3(n-7)-14=-8 | | 2(3m-4)=9m-11 | | 17.3x15.23=263.479 | | 11/24+1/6a=1/4a | | 4+x6=8+3x | | 2⋅√x=22−10 | | 2⋅x√=22−10 | | 4x+3=6x=7 | | x(x)=-7 |